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THE THEORY OF THE THERMOHYDRODYNAMIC GAS LENS
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We find an analytical solution for the equation of the beam frajectory for arbitrary lens-like
media of the type n = n(y). We examine the optical properties of certain specific lens-type
media,

Particular attention is being devoted at the present time to the development of lens-like media by a
thermal process [1, 2], Particular importance is ascribed to the development of the theory of thermody-
namic gas lenses. The study of the behavior of a light beam in a gas lens is possible with very good approx-
imation within the framework of geometric optics, Let us analyze the trajectory of a beam in a cylindrical
gas lens with arbitrary axisymmetric temperature distribution. The distribution of the refractive index in
such a lens is also axisymmetric, and we can therefore limit ourselves to the plane case, In Cartesian co-
ordinates the equation for the trajectory has the form
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We will assume ~ as is the case under real conditions — that the refractive index is a weak function of the x
coordinate in the direction of beam propagation. The refractive index may be regarded in this case as an
exclusive function of the radius n = n(y). The literature contains approximate solutions of (1) for certain
special cases [3, 4]. Here we find an exact solution for (1) for arbitrary lens-like media of the n = n(y)

type and we investigate the specific lens-like media. It is demonstrated that unlike the approximate solution,
the exact solution of (1) yields qualitatively new results,

For arbitrary lens-like media of the n = n(y) type Eq. (1) has the form
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Taking y as an independent variable and introducing the new function
u) =y, 3)
we bring Eq. (2) to the form of a linear first~order nonuniform equation, i.e,,
whose over-all solution has the form
w=y" =cnt@)—1. )

Integrating (5) yields the beam trajectory
dy ®)
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The arbitrary constants ¢, and ¢, are determined from the boundary conditions
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In addition, let us examine certain specifics from lens-like media. We know {6, 7] that in a tube with
a uniform heat flow through the wall, in the presence of forced convection, given sufficiently large values of
x we have a completely developed temperature profile, and namely:
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Here it is assumed that x = z/R, y = r/R. We see from (8) that for short lenses. given sufficiently large
Reynolds numbers, we can treat the temperature, in approximate terms, as an exclusive function of the y
coordinate. If we restrict ourselves to an investigation of the beams propagating in a region sufficiently
close to the axis of the tube, instead of (8) we will have
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The dielectric constant is associated with temperature by the relationship
=14 0l (10)
If (T — Ty/Ty)?< 1, the following equation is valid:
T 1 IT=T (1)
T T,
Substitution of (11) and (9) into (10) yields the quadratic medium
e = g, — ay’, (12)
where
7 gR (g,— 1)
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Since n = Ve. according to (6) we have
Xy == j ——_m_di_:,?_-—_— . (14)
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After integration of (14) and simple transformations we have
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Thus, in this case the trajectory is a sinusoid with the amplitude

A=y Gt —1 - l/ié . (17)
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and the period
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It follows from (17) and (18) that the amplitude and period of the oscillation are functions of y, and vh. A
consequence of the relationship between the period and the boundary values is aberration, primarily spher-
ical aberration, It is interesting to note that from the approximate solution of the trajectory equation for
the quadratic medium the conclusion is drawn in [3] that the latter is free of aberrations.

If we do not limit ourselves to a region sufficiently close to the axis of the tube, in analogous fashion
instead of (14) we find the beam trajectory which is expressed in terms of the following elliptical integral:

X—Cy= j dy , (19)
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If ¢4ef < 1, the integral in (19) is brought to the form
2 dy
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while if cyef > 1, it is brought to the form
= 2 X dy 29
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For example, let us analyze the integral in (21). From a comparison of (19) and (21) we find that
ca
(23)
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The substitutions which transform the elliptical integral in (21) to normal Legendre form are different for
the various integration intervals [56]. If 17 >b > 0, then
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where F (@, k) is an elliptical integral of the first kind;

b
¢ = arc cos —;
n
(25)
a
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Substitution of (24) into (22) yields
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X—Cy= F(o, k). (26)
It would be possible to perform calculations of this type for any integration interval [5]. Considering the
functional equations

F(—(P’ k) = —F(qu k)r

(27)
F(mm & @, k) = 2mK (k) & F (9, &),

where K (k) = F(7/2 k), we conclude that the maximum deviation of the beam from the axis of the lightguide
will be at the points
_ @mt DK (k)2
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and the beam will intersect the axis of the tube at

MK (k)2
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with the oscillation period
4K (R)-2
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as in (18) being a function of the boundary values y,, yj, and the magnitude of the heat flow.

In conclusion, it should be pointed out that the derived formula (6) makes it possible not only to deter-
mine the trajectory for any n = n(y), but to find lens-like media which ensure the specified beam trajectory,
which on occasion is no less important,

NOTATION

is the refractive index;

is the dielectric constant;

is the transverse coordinate;

is the longitudinal coordinate;

is the heat flow;

is the coefficient of thermal conductivity;

is the temperature at the tube inlet;

is the temperature at the point where the profile is completely developed;

is the tube radius;

is the dielectric constant at the inlet to the segment with a completely developed temperature
profile;

T is the oscillation period;

F@, k) is an elliptical integral of the first kind;

K k) is the total elliptical integral of the first kind.

g Pe X e B

<

LITERATURE CITED

D. W. Berreman, Journ, of Optical Society of America, 55, No, 3 (1965).
D. Marcuse, B.S.T.L., Vol, XLIV, 2087 (1965). o
D. Marcuse, IEEE, v, MTT-13, No. 6 (1965),

S. E, Miller and D, Marcuse, B,S,T.I,, 47, July (1964).

I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian}], Fiz-
matgiz. Moscow (1962).

R. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Res., Section A, 7, 386-392 (1958},

S. Goldstein, Modern Developments in Fluid Dynamics (1938), p. 622, B

O W WO DD

4 o

897



